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The Christoffel functions A, (du) associated with a general nonnegative measure
4 on RY are studied. The asymptotics of A,(du) are derived for u supported on
[ — 1, 11% The estimates of A,(du) are used to study the summability of the multi-
variate orthogonal polynomials associated with u. The pointwise convergence of the
partial sums of the orthogonal expansion, and their (C. 1) and de la Vallée Poussin
means are considered. ¢ 1995 Academic Press, Inc.

1. INTRODUCTION

Let N, be the set of nonnegative integers. For k= (k,, .., k,)e N§ we
write (k| =k, + --- +k,. For ne N we let [T be the set of polynomials of
total degree n in d variables, and let /74 be the set of all polynomials in d
variables. For a nonnegative measure # on R“ with finite moments, we let
{Pu} ki=nno. Where ke N{ and Pjell, be a sequence of orthogonal
polynomials associated with x in d variables. For a function fe L?,/ the nth

partial sum of the orthogonal expansion of f is defined by

R

n—1

Sdifix)= Y Y arPyx),  ay=]_ fy) PYy)du
Rd

m=0 (kl=m

The reproducing kernel of these multivariate orthogonal polynomials,
denoted by K (du, -, - ), is

n—1

K, (d,x,y)=3 Y PY(x) Py, x,yeRY

m=0 |kl=m
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It serves as an integral kernel of S,(du,f). The Christoffel function,
denoted by A, (du. -), is defined by

A, (du, xy=[K,(x,x)]7".

The purpose of this paper is to study the asymptotic behavior of this func-
tion and the pointwise convergence of S, (du, f) and its first Cesaro mean.
While for the asymptotics we will restrict 4 to a class supported on
[ —1,1]¢ in general the measure is restrained by some conditions, but
kept general otherwise.

For d=1, the Christoffel function, usually denoted by 2, (dx), plays a
significant role in the study of orthogonal polynomials of one variable. One
important property of the Christoffel functions states that

lim n2,(dx, x)=nma'(x)}(1 — x3)172 forae. xe[—1,1] (1.1)

LR 4

for measures « belonging to Szeg8’s class, ie., log '(cos 1)e L'[0, 2n] ([9.
Theorem 5]). For the historical accounts concerning (1.1} and other
properties of 1,(dn), we refer to [2] and an extensive survey [11]. The
summability of orthogonal polynomials with respect to a general measure
a on R has been studied quite extensively. The order of 4, (da, x) as n goes
to infinity is an important quantity in such a study, as demonstrated in the
work of Freud (cf. [2, 11]). For example, suppose [nZ,(da, x)] " is
bounded on a set 4, then for a function fin L2, the first Cesaro means of
the orthogonal expansion of f converge almost everywhere to f on 4.
Moreover, the de la Vallée Poussin sums of the partial sums S, (da, /) con-
verge to fe C with the same speed as the best polynomial approximation
from [7, (cf. [2, Chapt. 4] and [ 11, Sec. 441).

Compared to the univariate results, the theory of multivariate
orthogonal polynomials received comparatively little attention in the past.
In fact, although many systems of orthogonal polynomials in several
variables were known and studied for years, there are only a handful
papers in the literature devoted to the study of the general theory. We refer
to [ 1, Chapter XII] for the results before 1953, [4, 10, 13] for the develop-
ment up to 80’s. One of the major difficults lies in the fact that for each n
there are ("¢~ ') linearly independent orthogonal polynomials of degree n
in d variables which causes problems in ordering and in notation. Recently
a vector notation has been introduced in order to overcome this difficulty
(cf. [5, 6, 14-19]). Using this vector notation, many properties and
theorems of orthogonal polynomials of one variable have been extended
to multivariable, including the three-term relation, Favard’s theorem,
Christoffel-Darboux formula, Jacobi matrices, and many others. Important
applications of this general theory are also found in the area of Gaussian
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cubature formulae. We refer to [ 14-19] and the references there. However,
the present paper seems to be the first one dealing with the summability of
multivariate orthogonal polynomials in general. We shall start with
estimates of 4,(du, x) in Section 3. For yu that has compact support and
subject to certain restraints, we have the order of A(du) as n“. Naturally,
a much stronger and highly desirable result would be the analogue of (1.1)
for multivariate orthogonal polynomials. The limit relation (1.1} is usually
proved by the use of Szegd's theory, which is established for complex
orthogonal polynomials on the unit circle. The application of Szegd’s
theory on orthogonal polynomials of a real variable is carried out through
the so-called *-transform, which plays a central role in the theory. While
part of Szegd’s theory can still be extended to the setting in several complex
variables, nonetheless, our attempt to extend the *-transform in several
variables has failed. The failure makes us believe that the extension of
Szegd’s theory to several variables is difficult, if possible at all. As a conse-
quence, the usual method of proving (1.1) is not available at present time.
Fortunately, a method in Freud [2] for orthogonal polynomials of one
variable uses only real variables, which we shall extend to the multivariate
setting. The measures are subject to certain additional restraints, but are
still quite general. For one class of measures supported on [ —1, 17]°, we
are able to establish in Section 4

3 Wix) \/l —x7/1—=x3<liminf N, A4, (du, x)

n — x

<lim sup N, A, (du, x)

"

L2 W(x) /1 —x? /1 —x2 (1.2)

for almost every x in [ —1, 1], where N, =dim [T, . Although this result
may still hold for ¢ > 2, a somewhat unexpected behavior of the reproduc-
ing kernel of the product Chebyshev weight function has caused difficulties
that we have not been able to overcome. Because of the dependence of the
order of A,(du) on the dimension, our results on the summability of
orthogonal polynomials of ¢ variables require stronger conditions on the
class of functions being approximated for larger d. For example, for d=2,
the de la Vallée Poussin sums converge for functions in Lip”, f>1/2,
instead of functions that are merely continuous as in the case of d=1.
These results and others on the summability of multivariate orthogonal
polynomials are discussed in Section 5. Our proofs in this last part follow
a method developed for orthogonal polynomials of one variable (cf. [2]);
its extension to several variables is made possible by using the formulas
developed in our recent papers, mainly [ 14, 15]. In the following section
we fix the notation and give the necessary preliminaries.

640 82 2-3
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2. PRELIMINARIES

Let .#(R%) be the set of nonnegative measures 4 on RY whose moments
are finite, i.e.

lex"|d/1(x)<oo, ke N,

where we have used the standard notation x=(x,,..,x;) and x*=
x%1...x* Throughout this paper we denote by a the measure on R' and
by u the measure on R¢ If « is absolutely continuous, we write
do=0o'(x)dx, and if g is absolutely continuous with respect to the
Lebesgue measure, we write du= W(x)dx, where W is the Radon-
Nikodym derivative of x. For convenience we always assume the measures
are normalized by {du=1.

For ue . #(RY), let Py(du)ell? be the orthogonal polynomials with
respect to u. For each n we arrange P} according to the lexicographical
order of the set {ke N§: |k] =n}. Let r,=r?=dim /71 —dim I7¢_,. Using
vector notation

P, (du, x) =[Py, (du, x), Py, (du, x), .., Py (du, x)]7

where the superscript 7' stands for the transpose and the elements are
arranged according to the lexicographical order, we can express the
orthonomality property of { P} (du)} by

f P, (du) Pl (du)du=9,, 1,

where 7 is the identity matrix of size r, x r, when m = n and zero otherwise.
For convenience, we call {P, (du)} 7, the sequence of orthogonal polyno-
mials. Using this vector notation, the multivariate orthogonal polynomials
satisfy a three-term relation

x,-[p,,(d;l) =An.i[pn+l(dlu) + Bn‘ilpn(d/") _+_A'T

t—Lf

Ipn~l(d1u), ISISd,
(2.1)

where P_,(du)=0, Py(du)=1, and A4, ; and B, , are proper matrices of
dimension r,xr,,, and r,xr,, respectively, A_, , is taken to be zero.
Together with a rank condition on A, ; this relation characterizes the
orthogonality of P, (Favard’s theorem [6, 14, 15]). -

For a vector ae R% we denote by |a], the /? norm, |aj,=./aTa. For a
matrix 4, we denote by |4|, the matrix norm induced by |a|,. In [15],
using the spectral theorem of a commuting family of self-adjoint operators,
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we proved that sup,. |4, ;l; <o and sup, ., |B, ;| <o, 1 €i<d, if and
only if x4 has compact support. One direction of this equivalence relation
can also be proved as follows. From the three-term relation (2.1) and the
orthogonality of P,, it follows that A, ,={x,P,(du,x) P, (du, x)du.

Therefore, if 4 has compact support and supp u# = [ — M, M]“, then by the
Cauchy-Schwarz inequality we have

1/2

1/2
([ 1002 1P e 02 ) (1P el )

112

<ar([erdenfzan) = (22)

A similar estimate can be given for B, ,={ x,P,(du, x) P (du, x) du. Using
the vector notation, the reproducing kernel of multivariate orthogonal
polynomials takes the form

n--1

K, (du,x,y)= ), Pl(du, x)Py(du,y)
k=0
and it has the property that gives its name

j P K, (du,y, ) duly) = P(x),  Pelli_,.

R

From the three-term relation follows the analogue of the Christoffel-
Darboux formula ([ 147])

K, (du, x,y)

— [An» l.i[pn(d,u’ x)]rﬂ:”"k](d‘u, y) - PI\l(‘iﬂ’ x)[Anf].ipn(d,ua y)]
X =¥

(2.3)

for 1 €i<d Let Lf,“ denote the space of u-measurable functions for which

a 1,2
= P ducr} <oz

For fe Lf,ﬂ, we consider its multivariate orthogonal polynomial expansion,
which, in vector notation, is

.

f~ ), alldu, f) P, (du), ak(du,f)=J SUy) Py (du, y) du.
23

i«
k=0
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The vectors a, (dy, /) are called the Fourier coeflicients of f. The nth partial
sum of this expansion, denoted by S, (du, f), is defined by

n—1

S, ldu, foxy= 3 a,;’_‘(d;z,f)[l)k(d;z.x)zj

0 R4

S K, (du, x, y) duly). (2.4)

If 77¢ is dense in L2

2 then we have the Parseval identity

Y (a3 = [ 1700 dut (25)

k=0
The Christoffel function is defined by

n—1 -1

A,,(d,u,x)=[K,,(d,u,x,x)]'={ P du, x)3 ] . (2.6)

k=0

It satisfies the following fundamental property ([ 14])

A,(x)= min J 1P(y)|* du(y). (2.7)
rerri_| Jwr¢
Pixi=1

For other general properties of multivariate orthogonal polynomials we
refer to [5, 6, 10, 13, 14-19].

Throughout this paper, for d=1 and the measure xe.#(R'), we write
K, (do, x,y) and 4,(dx, x) for the reproducing kernel and the Christoffel
function of orthogonal polynomials of one variable. We use the letter 4 to
denote a set in either R or R whose exact meaning will be given locally.
The constants in this paper follow the following rules. We use the letters ¢
and ¢y, ¢,, ... for constant that depend only on the dimension d and other
fixed parameters, their values may vary from place to place. The letters M
and M,, M,, .. denote constants that retain their values.

3. THE ESTIMATE OF THE CHRISTOFFEL FUNCTION

We consider a simple situation here; its corollary (Corollary 3.2)
nevertheless illustrates the behavior of 4, (x).

THEOREM 3.1. Let ae.#(R") be absolutely continuous, and pe . #(R?)
be absolutely continuous with respect to Lebesgue measure, du = Wdx. If

s

Wix)=c,

i

2 (x;), (3.1)

1
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then

d
Ad, x)y=c, ] 4,0da, X)) (32)
i=1

On the other hand, if

=

Wix)<e, [} o'(x;), (3.3)
i=1
then
d
A, (du, x) < ¢, H /l[mf Diap{d, X;) (34)

=1

Proof. Let du,= Wydx with W,(x)=TT1Y_, «'(x,). Then the orthonor-
mal polynomial P(du,), |k|=n, is equal to p,, (da) - i (da). Therefore,
by (2.7) and (3.1)

A"(dﬂ’ x)>An(‘11d#0ﬂ X)ICIA,,(/JO, x)

YOS [P ]}'l

|:m-l k| =m
[n~l n~1

-1
Z > pi (o, x) - pfd(da,xd)]

ky= ka=1

y d
=c, [] [Kulda, x; n dx, x,

This proves the inequality (3.2). On the other hand, suppose (3.3) holds.
Let p. be a polynomial of one variable of degree at most »n — 1, such that
px)=1and 4,(dn, x) = jp tyda(t). Let P=p  ---p ell4, | . Then
P(x)=1 and we have by (2.7)

Ay 1y, X) S Ay, _ gyl Cadtg, XY= Ay vy 41 (ditg, X)

<c, J‘Rd Ax)du=c, n'[ P (1) dx

i=1

o
=c, [] A, (da, x;).

i=1

Since A,(u) is nonincreasing, changing d(n— 1) to n proves the inequality
(34). 1
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CoroLLARY 32, Let xe . #(R") be absolutely continuous and supp « <
[—1,1]. Let ue . #(RY) be absolutely continuous with respect to the
Lebesgue measure. If (3.1) holds and

[ni (e, x)] '<er,  1<i<d, (3.5)
then
[nfa,(u %) <es, (3.6)
where cs=c; '¢%. On the other hand, if (3.3) holds and
nd,(a, x;) < ¢4, 1<i<d (3.7)
then
niA,(u, x) < cq, (3.8)

where cg=c,(dcy)?. Moreover, if (3.1) and (3.5), or (3.3) and (3.7), hold
uniformly on a set A, then so does (3.6) or (3.8).

This corollary follows from Theorem 3.1 easily. Conditions (3.5) and (3.7)
have been established for many classes of measures (cf. [ 2, 9] and the references
there). In particular, for measures in Szegd’s class, they follow from (1.1) for
almost every x in [ —1, 1]. If, in addition, « is absolutely continuous and «’ is
continuous and positive on an interval 4 = [ —1, 1], then (1.1) holds uniformly
for x e 4 (cf. [ 11, p. 18]). Using these results, we can easily write down several
specail cases of Corollary 3.2. For example, for the product measure du =
a'(x,)---a'(x ) dx on [ —1,1]¢ where «' satisfies the conditions for which
{1.1) holds uniformly on 4, we have that {3.6) and (3.8) hold uniformly on 4%
We shall not fomulate further consequences of Corollary 3.2 explicitly, instead
we consider several classical weight functions to illustrate the results. Let w'“ "’
be the Jacobi weight function, w'* ' (x) = x“(1 —x)", a,b> —1, on (0, 1). It is
known (cf. [ 11, p. 18]) that

oy <nd,(w" x)<c,

for every xe€(0, 1), and the inequalities hold uniformly for every closed
interval 4 =(0, 1). Let du = W(x) dx.

ExampPLE 1. W(x)=w'""""(x,)..-w')(x ) on the cube 2 =0, 1]“

EXAMPLE 2. W(x)=x%...x%(1—|x|)’, where |x|=x,+ --- +x, on
the simplex 2= {x:x,>0,..,x,20, and 1 — |x| 2 0}.

EXAMPLE 3. W(x)=(1—|x|%)", where [x|3=x]+ --- +x2, on the ball
Q={x:|x|,<1}.
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The orthogonal polynomials for these three cases are introduced in con-
nection with hypergeometric series of several variables (cf. [1, Chapter
12]). They are eigenfunctions of certain second order partial differential
equations, see [ 1] and [7] for the case d=2. Let 4 = Q be compact and
the distance from 4 to the boundary of € be positive. Since the only zeros
or singular points of W in these examples are on the boundary of Q, for
x € 4 we can use Theorem 3.1 and Corollary 3.2 by comparing W with the
function that takes the value 1 for every point in [ —1, 1] and zero out-
side. This function is the product of copies of w'®® therefore, we have that
in all these cases, (3.6) and (3.8) hold uniformly for x € 4.

4. ASYMPTOTICS OF THE CHRISTOFFEL FUNCTIONS

In this section, we prove (1.2) for a class of measures supported on
[—1,1]% Our method depnds on a thorough investigation of the
reproducing kernel for the product Chebyshev weight function W,,. In Sec-
tion 4.1, we estimate the Christoffel functions A, (W, ). A compact formula
for the reproducing kernel K, (W, -, -) is given in Section 4.2, and used to
derive the estimates on K, (W, ). The main result on the asymptotics of the
Christoffel functions is proved in Section 4.3.

4.1.  The Product Chebyshev Measure
We denote the classical Chebyshev measure by a,, which is defined by

oy =

1
=, xe[—1,17,
T/l —x

and zero outside [ —1, 1]. By the product Chebyshev measure on [ —1, 1]
we mean the measure u, defined by du,= Wy(x) dx where

d

U V1 \,’

In the definition of a, we already incorporate the factor = ', so that the
integral of a5 on [ —1,1] is 1. The orthonormal polynomials with respect
to x, are

Ty(x)=1, Tk(.r)=\/icosk(), k=21, x=cosf. (4.11)

1
Wolx)=ap{x,)---al(x,) =3 xe[—-L 17

We warn the reader that our definition of Chebyshev polynomials differs
from the usual one by a factor \/i since our T, are orthonormal with
respect to a,. It is easy to verify that the orthogonal polynomials with
respect to i, are given by

Pi(dug) =Ty (x,) - To(xa).  |kl=n  keN{  (412)
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We need some properties of the reproducing kernel of a,,

n—1

K (dag, x,y)=Y T.(x)Ti(r),

k=0
which we summarize in the following.
LEMMa 4.1.1. Let x=cos 0 and y=cos ¢, 0< 0, ¢ <zm. Then for n>=1
|K,(doy, x, )| <4min{n, |0 —¢| '} <dmin{n |x—y| '} (413)
and
1 sin(2n —M

n
K, (doy, x, x)=n—= , >-.
o X X)=n—o e 73

(4.1.4)

This lemma can be proved by using the explicit formula of X, (dxg)
which is available through the summation of trigonometric functions. We
refer to [2, p. 101, and p. 175]. The inequality (4.1.4) is stated in [2] for
n =3, but the case n=1 and 2 can easily be verified. The estimate (4.1.3)
will be used only in the next section.

From (4.1.4) one immediately has the following

lim »n 'K, (dw,, x, x) =1, xe(—1,1),

n—

which is equivalent to (1.1) for a,. For d> 1, however, the nice formula in
(4.1.4) is not available anymore. Indeed, even for d =2 we are able to find
the explicit formula only after a tedious computation. We give this formula
in the following to explain the difficulties, but leave out the deduction.

ProposITION 4.1.2. Let d=2, x=1(x,,x,), and x,=cos ), x,=cos ¢.
Then

K, (du,, X, x)

_1<n2 n+_1.>
T2 2

1 <sm(2n —-1)8 s1n(r2n —1) ¢>
sin sin ¢

+

+

l(sx (n—1) 51n2(n~1)¢>
2

sin® f sin® ¢

1<smn(9+¢ )sin n(6 —¢) sin(n— 1) ()+¢)sin(n—1)(0-¢)>
sin(f +¢) sin(@—¢) sin(f + ¢) sin( — ¢) '

+
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Fortunately, to prove the limit relation analog to (1.1) for W, we do
not need the explicit formula of K, (dy, ), the following lemma is enough.

Lemma 4.13. For n=1 and x e R,

/-1
K,,umo.x.x):(”“[ >+R,,(x). (4.15)
[«

where R, satisfies the following properties

4 1
|R,7(x)I<<'n""H(l+—l——7>, xe(—1, )Y (416)
X

i=1

and
J‘ IR, (X)| du,<cn’ "logn. (4.1.7)
[ -1}

Proof. We use induction on 4. To indicate the dependence on the
dimension, we write K, ,(du,) and R, ;,=R,. For d=1, we have by
(4.1.4)

I sin(2n—1)¢0

R, ,=—=
! 2 2sin 0

Clearly, for every xe(—1, 1), we have

—
—

|Rn_ l(—\ﬂ)t <V+

t9

2./ =x2

The inequality (4.1.7) for d=1 follows from the formula of R, ; by a
change of variable and the use of a well-known inequaltity

lj‘"
T
Assume now that the theorem has been proved for K, , _,(du,). For

xe RY we write x=(x,,x') where x'=(x,, .., x;). Moreover, let x, =
cos 4, 0 <O<n By (4.1.2) we find

sin(n—1/2)8
sin(0/2)

4
{a’()<3+-,10gn. (4.1.8)
2

n—1
K, Aduo, x.x)y=3 T (x)K, ;, (du,, x',x').

J=0
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Therefore, by induction hypothesis, we can write
", n—j+d-2 ,
K, ,dug. x,x)=} Tf(-’fl)[< d—1 >+R,17j,471(x ):|

i=0

n+d—2 o, n—j+d=2
- 2 2 g
( 1 >+ Y. cos? ji( < g )

i=1

n-—1
+ Z Tf(xl)Rnr—j.d 1{X")

j=0

" m—j+d-2\ " n—j+d—2
= 2j0
/;) ( d*l >+jzl cos j < Ci—l )
ne-1

LTI R, (X)),

i=0

Using the identity

v n—j+d—2>_”z'<j+d—l _ n+d—1>
ot d—1 ~j=0 d—1 ) d ’

which is known and can easily be proved by induction on n, then we have

n+d—1

d >+Rn.d(x)

Kn,d(d#(), X, x) = <
where

n—1 ) n_~+d_2 n—1 . ,
Rn,d(x): Z Coszj()( ji‘l >+ Z Tj".(x])Rnfj.df—l(x )
j=1 7i=0

=1 (x,)+ 1(x)

We need to prove that R, , satisfies both (4.1.6) and (4.1.7). Let

4 1
By(x)= <1+m>.
! 11;11 \/I—X,z

By induction hypothesis and (4.1.4), we have

n—1

L(x)| <eB, (X )n"2 Y T2x,)
j=0

N
<CBy (X0 <n——+%><(-gd<x) pe

2 2 /1—x?
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and

ol

| Intoldug<c |
[-11y

n—1
Z Tf(-"] ) doy(xy)
Vo
XJ (R, a (X)) diy(X')
[ -1.1397!
n- 1
<ce Y (n—j) " log(n—j)<cn’ 'logn.
J=0

Therefore, we only need to show that /,(x,) satisfies the same bounds. The
estimates are based on the following observation. Let the kth Cesaro sums
of a sequence s,, 5,, ... be defined by

St =s,, SE=SA"14 .4 S5 feNyg.

This notation of S7 is consistent with [ 20, p. 757; it is used only in the rest
of this poof. Then

") —j4d—2
Y. cos jo (n e
d—1

j=0

):si,m>

where S#(#) is the nth Cesaro sum of the fth order of the sequence 1,
cos f, cos 20, ... Indeed, using the formula of Cesaro sums as in {20, p. 77],
this formula can be verified easily. We notice that our first Cesaro sum of
this sequence is just

" 1 sin(n—1/2)6
NH=S! )y = =+ —
So =S, 1100 = 2, coskl=3+= o)

From the definition of /,, we have

n |l —j+d—2 1—2
Lix))=Y costH(n Al >_<n+¢ )

P d—1 d—1
d B n+d—2)
=S4 ,(20) <d—1 .
Since (cf. [20, p. 771)
7
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where I is the Gamma function, we only need to estimate /5(x,):= S (20)
to conclude the proof. By the definition of the Cesaro sums, we clearly have

sin(2k — 1) ()>

[S$4 (h] <n’ ' max Sh <en'™'  max 1+ -
n o1 k
! sin 6

O<hsn 1 O h<sn -

In particular, we have

1
[ {x ) <en ! <l +~«——-~—> <en' 'Bx),

JI=xi

and by (4.1.8),

sm(Z'k -1 (I\ d()>
sin

. [ o
J (x)] dug<cen ! (1 + max —J
[ERNEE 0

O<hsn-1T
<cn? Vlogn.
Putting the estimates of /,, /,, and I, together completes the induction. |

This lemma contains more than what we need to prove the limit relation
for A,(W,); the inequality {4.1.7) is for later use in Section 4.3. Using
{4.1.6) in this lemma we easily obtain the limit relation,

THEOREM 4.14. For d>1, and xe(—1, 1),

<n+d—l

li
1m d

">«

)A,,(cl’yo,x): l.
Proof. From (4.1.5) and (4.1.6) we have

1 4 1
<—n_‘_d;_l“>'Kn(dﬂo,x,X)—l <cn "IR,,(X)IS<'I1'iI]1(1+~TE>,
d

for every x e (—1, 1), Therefore,

1
im ———— =1,
"Lnl <n +d— 1) Kn(d/l()s X, X)
d
which implies the desired result. ||

4.2. A Compact Formula for the Kernel Function

In this section we derive a compact formula for the reproducing kernel
function K, (duy). This formula will be used in the following section, and
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is of interest in itself. For xe [ —1, 1]¢ we use the notation x;=cos /,, and
we denote by O the vector @ =(#,, ... 0,), and @ =(¢,, .., ¢,). Moreover,
we use the notation cos @ to denote the vector cos @ ={cos (), .., cos ().
For x =cos & we define

Lx)= Y cosk,0 ---cosk,, (4.2.1)

ikj<sn -1
where the notation ¥’ means that whenever a k,=0 the term containing
cos k.6, is halved.

LemMa 42.1. Let x,ye[—1.1]¢ and x =cos @ and y =cos ®@. Let ¢ be
a sign vector, ¢€{ — 1,1} and denote by ®+¢@ the vector that has
components ¢+ €60, Then

K.(dugx,y)= Y L,(cos(P+:0)) (4.22)

ret-1, 14
where the summation is over all e { —1, l}".

Proof.  From the definition of K, (du,) we have

K, (dig, X, y) =27 Y cosk,0,cosk ¢, cosk,b,cos kb,

Jki =1
Using the trigonometric identity
cos kt) cos k¢ = 5 [cos k(8 + ) +cos k(0 — $) ],
the desired identity follows easily. |

Next we establish a compact formula for the function L, (x). For this
purpose, we need the following trigonometric identities.

LEMMA 422 Let 0<0, ¢ <n. Then

" 1
Y cos k@ sin <n‘k—;>¢

A=10 <

1 1 f)
p cos <n ﬁ§> ¢ cos %—COS <n ~§> 0 COSE
2

cos ¢ —cos 8

’

(4.2.3)

and

"

! 1
3" cos k0 cos (n—k—;) ¢
k=0 <

1 . : 1 0
p sin<n—§>¢smg—sm<n—§>{lsm§ 124
T8y cos (! —cos ¢ - (429
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Proof. These two identities are proved by using simple trigonometric
identities, we only give a sketch of the first one. We write

n—ll ) 1
Y cos kO sin <n—k—;>¢
k=0

P

. |
=sin (n — 5) Y cos k) cos k¢

k=0
1 n- }
—cos <n - —) ¢ Y cos kO sin k¢,
2 k=0

and use the sum of cosines and sum of sines to replace the products
cos k) cos k¢ and cos k0 sin k¢p. Then we use the well-known identities

. 1 0 1
sin{n—— |0 o cos-—cos|n—=)0
2 "Z ) = 2 2
0 S Ar= 0

2 sin - k=1 2 sin -
2 2

-1
Z' cos k) =

k=0

on the sums, which leads to an expression that can be simplified by the use
of the elementary trigonometric identities to the desired formula. |

THEOREM 423. For d>1, ®@€[0,n]9

0, . s
(—1)l-12] 4 COSE(S'“()/)‘I F(0,)

247! S TT9- ., (cos 0, —cos 0,)

L,(cos @)= (4.2.5)

where F,(0)=sin{n—1/2) 0 for odd d, and F,(0)=cos(n — 1/2) 0 for even d.

Proof. We use induction on d. To indicate the dependence on d we
write L, ,=L,. For @€[0,7]4"!, we write ©=(0',0,,,) with & ¢
[0, z]% Our induction process is based on the following relation

w—1

Ln,d+ I(COS @) = Z’ Ccos k0d+ 1 L”,_ ;\._‘I(COS @I) (4.26)

k=0
and the well-known fact that

1
i —= )0
sin <n 2)

.0
2sm3

<

L, {cosfl)=



9
(38
—
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From these, using the identities in Lemma 4.2.2, we easily deduce that

1 0 1 0,
1 cos <I1 — ;) #, cos —2-' —Cos <n - 5) 0, cos 5

L, 5(cos @) == - -
n, 2(C08 &) 3 cos ), —cos 0,

and

. 1 0 0, . )
sin { n— ICOSESID(I

“

L Q)= —-
n.a(c0s €) 4| (cos 0, —cos O, )cos 1, —cos )

i ! 0 O 0
sin { n 3 2c0525m 5

(cos 8, —cos 0, )(cos #;, —cos 0,)

. 1 0; .
sin <n - 5) d, cos -21 sin 4,

(cos 0, — cos 0 )(cos ), — cos 0, )

Assume now that the theorem has been proved for L, , with r<d We
prove it for L, .. ,. First, suppose that d is odd. Using the relation (4.2.6),
the induction hypothesis, and (4.2.3), we have

L, ;. (dug, cos @)

(}i : 2
(—1)id-12) 4 cos = (sin ;)4 *

2970 STy ., (cos 0, —cos 6,)

nf’l ] 1
x Y coskl,,, sin <n—k—§> 0,

k=0

0, . d |
td— 21| d cosz(sm ;) cos n—a 0,

21/

_(=1)

1! {cos fl,—cos 0,)

i=1 J= iy

{(sin 0,)4"!

{cos §;—cos #;)
(4.2.8)

) 1 0, &
—Cos n—E 0,.cos 5 Y T

= =1 F=li#)
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However, « is an odd integer, so the function g(x)= (1 —x*)“" "2 5 a
polynomial of degree d—1. Let x,=cos¢, and g[x,. ... (,] denote the
finite difference of g based on x|, .., x,. We then have

a’il (sin {}I)d——l d+ 1 ‘ 1 — .2 )1./ - 172
d+l <.os(),~cos(),) arl B AN Y, = X;)

i=1 J=1 i) ,*1,,;,

=g[x....x,]=0,

where the last identity follows from the fact that the (/th finite difference of
a polynomial of degree d — 1 is zero. In particular, we have

‘Z’ sing ) (sin 0, ,)""!
1421, . (cost),—cos 0,) ]_[",I {cos B, —cost),)

i=1 f=1i#j

Substituting this formula into (4.2.8) and using the fact that
(— 1yl D2 = (1)Ll for odd d. we conclude the proof for the case
of odd d The case of even d 1s proved similarly with g(x)=
{(T—x3) 2214~y §

We remark that this formula gives a compact formula for the reproduc-
ing kernel of the measure y,. Such a formula makes the investigation of the
partial sums of Chebyshev orthogonal expansion in several variables
possible. We intend to explore this formula in another place. For the
application in the following section, we need

Limma 4.24. For ®e[0.7]",

{
: I
IL,(cos @)] <min |n, 5a 3

0.+0, 4 0.— 0.
i=1 i i : i j
sin ———- I <sm 5 >

- J=li#j =

(4.2.9)

where i’ can be taken as either i+ 1 or i—1. Moreover, for d=2 and
O e (0, n]? we have

1 | . 1
|L,,(COS 0)[ gimm 'Lﬂ min I‘l,—T:(T2 . (4210)
si sin
2
Proof. From the definition of L,, we clearly have
+d—1
IL,(cos®)|< Y :(n ¢ ><nd
ki<n -1 d



CHRISTOFFEL FUNCTIONS AND FOURIER SERIES 223

where the last inequality follows from (4.1.9). From (4.2.5) we have

(sin 0,)4"2

1 d
L,(cos 0)| < .
L. eos O <577 2 17, .., Icos ,—cos 0]

The denominator can be rewritten by the use of the trigonometric identity

0+0 . 0,—806,
COS (),;—COS {)jzzsin“-'i—jsln ,12 i
Since 6,€ [0, z], it is easy to verify that

0,+0,
2

sin 0, <2 [sin

holds. Therefore, we can replace the sin#, in the numerator by
sin(),+ 6y,)/2 in the denominator, which leads to the desired estimate
(4.2.9). If d=2, then we obtain from (4.2.7) and elementary trigonometric
identity that

L, ,{cos &)
_1[cosnfl —cosnl, cos(n—1)8, —cos(n—1)8,
4| cosf,~cos b, cos 0, —cos 0,
6,—0 0, +0 6,—0, . f, +0
lrsinn ’2 2sinn ';: 2+sin(n—l) '2 “sm(n—l)’—;:-—2
4 0,—0, 6,+40, ,n(),—()zsi 0,40, ’
i sin ——>—=sin —— si 3 n—

from which the estimate (4.2.10) follows readily. |}

4.3, The Asymptotics of the Christoffel Functions

We extend the theorem in {2, p. 175] for orthogonal polynomials of one
variable to that of two variables and discuss what causes difficulties for
d> 2. Our proof follows the method in [2], but the results we obtain are
stronger than those of {2], see the remark at the end of the section.

THEOREM 4.3.1. Let u=W(x)dxe. . #([—1,17%) and u,= W,(x)dx.
Let the function U be defined by U(x)= W(x) Wy '(x), xe[ —1,1]}? and
U(x)=0 outside [ —1, 112 Suppose for h such that |h|, sufficiently small,

JA[o,n]l

Ulcos(@ +h)) 1 ;
T _1id®<Mlog ¥ — 431
Ulcos @) ‘ °F (h(, ( :

6382 2-4
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for some B> 1. Then for almost every xe[ —1,1]*

!
2 2[Ux)] 'glimian”flﬂ K, (dy. x, X)

nooan 4

1 1
< lim sup [(nt )] K, (du, x, x)

n £ ~

<22 [Ux)] . (432)

Proof. We shall start the proof for u e .#(RY) and restrict to d=2 at
the point when we have to use the special estimate (4.2.10). We shall dis-
cuss the difficulties for ¢ > 2 after we complete the proof of this theorem.

From (2.7), we have

K, (du, x,x)=1[4,(du, x)]
) P?(x)
- lrenli‘? ! j[ 1, 1J4P2(Y)dl1(Y)
S K,Z,(dy(,,x, X)
/j[ L K,Z,(dﬂoa X, y) duly)

By the reproducing property of K, (du,), we write the denominator of the
last integral as

f[ ”]dKi(dum X, ¥) duly)

:U(X)J Klzn(dﬂ()~x~y)d/‘0(y)

[—1,17¢
+J"[ | ]Kf,(duu,x.y)[U(y)—U(X)]dﬂo(Y)
1)
= U(x) K, (dug, x, x) + U(x) J,,(X)

where

Uly) — Ulx)
J,(x) :J.[W‘v Iy Kle(dﬂo’ X, Y)-—y(j(‘x)—"dluo(y)-

Thus, we obtain

K, (du,, x, x)
> .
Ux) K, (du, x, x) T+ (K. (i x. )] T (%)
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Using the inequality

2

a

____.___a_> _b
1+a"b_a+b/a

which holds for all real a, b such that ¢+ 5 >0, we obtain
Ux) K, (du, x, x) =K, (duy, X, X) = J,(x).
Therefore, let N, =("*"“"!), we have by (4.1.5),
Ux) K, (du, x, x) = N, — | R, (X)] — J,(x),
which implies

1 ——% Ux)y K, (du, x, x) SNL |R, (x)] +% |/, (x)]. (4.3.3)

n

Let ¢* denote the positive part of a real number ¢, ie, ¢t =cif ¢>0, and
¢* =0if ¢ <0. Then, since N,=dim [[¢ . and

. i
J {lﬂ—U(x)K,,(z{u, x,x)} dug
[ -1 N

n

1 »

J[ Ll]“d'uo -}(J:J[ -114

K, (due,x,x)du=1-1=0,

we obtain from (4.3.3) and (4.1.7)

G,,:=j
[

1 +
=2 {1——U(x)l(,,(’dy, x,x)} dig
[—-1.1}4 N

n

1
1 ——N— U(x) K, {du, x, x)

n

dito

2 . R 2
< — —
\N,,J[ﬁlvljdl n(x)l dlu()+N J‘

nY[ -1

"]n(x)l d.u(l
134
logn 2

+"~‘

<« J
n N, -1

[ (x)] dug. (43.4)

To estimate the last integral, we first estimate the integrand J,(x}.
Changing variables from x;,=cos ¢, and y,=cos ¢;, 1 <i<d, we use the
formulae in Lemma 421 and Lemma 4.24. By (4.2.1) and Cauchy’s
inequality we have readily

K, (duy, X, y)|* <2 Z IL, (cos(® + @))%

cel -1, 144
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Therefore,

Ul(cos @) — U{cos @3]

dd
Ulcos @)

. (x)] =

J‘ ) KZ(du,, cos ©, cos @)
[0.7]

<2 % | iL(cos(® +20))
cef—_1.1347(0.2}

o Ulcos @) — Ulcos @)

Ulcos @)

1 do.
Integrating against @ and changing variables @ =h— @, we obtain

f |J,,(X)|duo<2"f f [L,(cos h)|?
[—1.1]4 [ [ —m ]

O'”]IIEE{-I, 134

dh de

| Ulcos(h—&@)) — Ulcos @)
Ulcos @)

$22"J |L,(cos h)|?
d

[0.7]

J
{(~m =)

We define g(h)=log ~#(1/|h|,) for |h|,<1 and g(h) bounded by 1 for
{h|,>2. Then we can use (4.3.1) in the last integral to obtain the estimate

Ulcos{(® + h)) — Ulcos 9)’ 46 dh.

Ulcos ©)

j I, (x)] dug < 2%M IL,(cosh)|>g(h)dh  (435)
[-1.1]¢

[0.7)¢

It is at this point we need to restrict ourself to d =2 and use the estimate
{4.2.10) to conclude that

) 1
J IJ,,(X)ldﬂ0<23Mf min } #%, ——————
[~1.17 [0 % ]2 Lo hy—hy
sin
2
xmin | #?, ———— h) dh.
a8
sin? ——=

For this integral we change variables from h to u with

uy=h,+h,, and u,=h,—h,.
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We can use the inequality [sin u,| = (2/r)}u;|, 0 <u, < x/2, to replace sin u;
in the integrand by wu,. Notice that log “#(1/z) is increasing for 0 <t <1,
and |h|, <\/§ |u],, we can replace g(h) by g(u). Enlarging the domain of
the integral we obtain

. r 1 0,1
J |, (x)| dug<c . min gn',ﬁ} min %n'f—,} g(u) du.
L-11F Jr i 1 o wu;

L 2

Splitting the integral over R? into the integrals over {|u] < 1/n}, {u, < 1/n,
u, > 1/n}, and {u, = 1/n, u, > 1/n}, we can estimate the last integral and
conclude that

J~ [, (x)| duy <cn’log P n.
[ -1.11

Therefore, by (4.3.4) we have established

log n 1 > 1
G,<c¢ e | K,
nS ¢ < n Jr(log n)* ¢ (log n)*

Since f> 1, we have
s A
Y Gu<ce Y rf<o,
r=1 r=1

Therefore, by Levi’s theorem (cf. [4, p. 305]), we have

x

)

r=0

1

ar

1 —

< oL

Uix) Ky tde, x, x)

for almost every xe[ —1, 1]% In particular, the terms in the summation
converge to zero,

l_l

lim =0 (4.3.6)

r—

Ux) K, {du, x, x)

3

for almost every xe[ —1, 1] Moreover, we have from (4.3.6)

1
F—e(x) < Ux) Ko (du, x, x) < T+ a(x),

ar

where ¢(x)— 0 as r —» oo. Since K, (du, x, x) is a nondecreasing function of
n, by choosing r such that 2"~ ' <n < 2’, we obtain

Utx) K, (du, x, x) < U(x) Ky (du, X, X) S Ny (1 +e(x))
< N,, (1 +e(x)).
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Since
2 1
N2n:< n2+ )=22N"(1+0(’11))~
we obtain

-

Ux) K, (du, x, X) 2PN, (1 +e(x) + O(n "))

which implies

lim sup — U(x) K, (du, x, x) <23

LY n

for almost every xe[ —1,1]> From this inequality follows the third
inequality in (4.3.2). Using

Ux) K, (du, x, x) 2 Ux) Ky 1 (du, x, x) = Ux) K, 5 (du, X, x),

the first inequality in (4.3.2) follows similarly. J

For d>2, one would naturally try to use (429) in Lemma 424 to
estimate the integral in (4.3.5). By using an elementary inequality

o o
min {a, y (',}<d Y min{a, ¢}, az0, ¢;=0,

i=1 i=1

and the estimate (4.2.9), we obtain

o

J [/, (x)] duyy
-1y
<d2¥M Zl i 20 | ! (h) ¢h
<d2- min | B4 — 5 .
( iZ1 710w 22 L hi+h, l_’I ( lr,—h,)- S
SIn- ———- sSin g
2 j=1i#j 2

We only need to consider one of the integrals, say, the first one. For this
integral we change variables from h to u with

uy=h +h,, y="h,—h,, us=h, —hy, . u,=h —h,,

it is readily seen that the Jacobian is equal to 2. Enlarging the domain of
the integral and the integrand as in the proof of the theorem, we obtain the
estimate

o
f [, (X)) duy < ¢ _[ min {n“’, Jﬁ} g(u) du,
[-1.1)4 R4 . u

i=1%y
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However, the last integral is not bounded by the desired bound
cn’log =7 n. Actually, the region where

d

.2 2
[T *=n
i=1

is bounded by u,---u,<n ¢ which, for d=2, is a hyperbolic curve. It is
not hard to show that the integral of g(u) over this region is bounded
below by a constant times n “; indeed, consider a subset of the region by
restricting 1/2<u, <1, then on this subset g(u)>g(1/2, n % .,n )=
log 72 and the area of the subset is bounded below by a constant times
n~ < Therefore, the last integral is bounded below by a constant times n*
and cannot be bounded by ¢n?log ~# n from above. The problem is that the
region is not centered, or localized, around the origin, while as a radial
function g(u) 1s centered around the origin. This indicates that the estimate
(42.9) is not strong enough, an estimate of a new type is called for.
Incidentally, the problem seems to be more serious due to the following
fact: the /' partial sums of Fourier series on T¢, which means that the par-
tial sums are taken over multi-integers inside the /' ball |k| <»n—1, do not
have the localization property for d=3 ([3, p. 751]), while the function
L, (cos @) is exactly the Dirichlet kernel for the nth /' partial sum.

The results in this theorem can be stated in terms of the Christoffel
function.

COROLLARY 4.3.2. Let the assumptions be the same as in Theorem 4.3.1.
Then for almost every xe[ —1,1]?

: B R I
%W(x),/lA_\';\/l—,vgsltirr{g‘rlf<’l; >A,,(d;1,x)

. +1
< lim sup (n 7 > A, (du, x)

<V W(x) JS1—xiJ1—x3,  (437)

moreover,

“

) 2"+ 1 5o s —
rllf’ﬂ[( ) )Azr(dy,x)=n“W(x),/1—.\';\/1—.\*5. (4.3.8)

The last relation (4.3.8) follows from (4.3.6). This result should be compared
to (1.1} for orthogonal polynomials of one variable; while (1.1} is much
stronger, as mentioned in introduction, its proof relies on Szegd’s theory.

We remark that the proof of this theorem follows the method in [2.
Theorem 6.7, p. 175] for orthogonal polynomials of one variable, however,
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our results when taking =1 are stronger than those of [2, Theorem 6.7].
Actually, the result of [2, Theorem 6.7] could have been stated as the limit
relations like in our Theorem 4.3.1, except that there is a small error in one
formula of [2], namely, the right hand side of the limit equation on the
middle of [2, p. 1807 should have been 1/zw(©).

5. SUMMABILITY OF MULTIVARIATE ORTHOGONAL POLYNOMIALS

In this section we study the summability of the partial sums of multi-
variate orthogonal polynomials. For fe LZ let E,(du, f), be the error of
best L7, approximation from 7Y, ie.,

En(d/l’./.)l!: lnf Hf— PHdu,Z'
rerr

We assume that E, (du,f),—0 as n— o and denote by .4, (R")c
(R the set of measures that satisfy this assumption. If 4 has compact
support, then ue.#,(R’). For fe C(2), 2 = R’, we denote by | f|, ,, the
uniform norm of f on £, and E,(f), . the error of best uniform
approximation from /77,

En (’f)m.ﬂ = infd H/_— P” o, 62

pelrd

First we consider the convergence of the partial sum operator S, (du, f).

LemMa 5.1. Let pe. #y(RY). If for xe RY
. Epnldy, /),

Y =<, (5.1

=0 \//‘:m+ 1 (d/l, X)

then S, (du, f) converges at the point x. If (5.1) holds uniformly on a set 4,
then S, (du) converges uniformly on A.

Proof. Since S, (du,[f) is the best Lf,/, approximation of fe Lf,ﬂ from
¢ |, and E,(du,f), tends to zero as n— o, we have by (24), the

Parseval identity (2.5), and the orthogonality of P, (du) that
Eyduf03= L= S,(du.f)] du

=J~Rd[ Z a[(du’f) Pg(dﬂ) “d‘u
k=n+1

e

= Y lacldu, N2

k=n+1l
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Therefore, using the Cauchy-Schwarz inequality, we obtain

- 'af“’ﬂ»f'”%“fﬂﬁw< Y eI Y IPde Xl
Nh=2m4 h—g) P
<Y IPde, x5 Y Ja] (du, )13
k=0 kw2

= [Eanldit 102 [ Ay (el )] .

Taking the square root and summing over s proves the desired result. [

LemMa S2. Ler pe. #,(RY). If
[n9A, (du, x)] ' < M? (5.2)

holds uniformly on a set A, then S,(du.f) is uniformly and absolutely
convergent on A for every fe L°, such that

2

e

N Eddu ) k' < (5.3)

k=1
Proof.  Since E, (du, ), 1s nonincreasing, we have

___Evlm‘d'u‘.'f): < A{21m+ln/2 I

— 3 E du, [,
A ldi X) 2 IA:1;'+| !

am

1241 {22 '
:]WT‘ 14 2m<(¢ )-2) Z Ek(d/l,‘/)z
PR B

am

s¢ Z E/‘-((I[l.f‘)z kitl 2y:2

h=2" 1
Summing over m, the desired result follows from Lemma 5.1. |I

These results together with their proofs are almost straightforward exten-
sions of the ones for d=1 (c¢f. [2, p. 139]). For d=1 and suppu=
[ —1, 1], condition (5.3) is satisfied, for example, for fe Lip . > 1/2. But
for d> 1. much more on [ is required. As an example we formulate the
following:

COROLLARY 5.3. Let pe. #(RY), suppu=[—1.17% and suppose that
(5.2) holds uniformly on A< —1, 11" Suppose fe CL* N[ —1,11Y) and
each of its [ d/2]th derivatives satisfies

IDURIf(x) — DU () <ch”, Ix—yl,<h,
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where for odd d, §> 172, and for even d, §>0. Then S, (du,f) converges
uniformly and absolutely to f on A.

Proof. By [8, p. 90], for f satisfying the above assumptions, there exists
Pe 11¢ such that

1f =Pl <on (LD,
which implies
E,,(du,f)z <cn —{[di2] +/ﬂ_

Using this estimate, our assumption on f implies that (5.3) holds. |

The fact that for d > 1 we need to assume conditions on the higher order
derivatives of /' does not seem to be accidental. It comes from the assump-
tion that [#94,(du,x)] ' is bounded, which seems to be quite natural
from the fact that for =1 the function §,(dx, ) is a sum of n terms, but
for d> 1 the function S, (du, /) is a sum of O(n“) terms. Our consideration
below of the first Cesaro mean of the orthogonal series will further
llustrate this phenomenon. In the following, we write y=(y, -, y,) and
t=1(1,,..1,)

THEOREM 54. Let pe. #(RY) be absolutely continuous with respect to
the Lebesgue measure, and Q = supp y be a compact subset <[ —1, 1]
We define W(x)=0 for x outside Q. Let x =(x,, .., x,)e[ —1, 1] be fixed.
Suppose p satisfies

.

J Wity di, < M|x,—v,l, M<o, (54)

Jor some i, 1 <i<d Then for fe C(Q),

1 n o1 )
. Y 1Sk (du. £, x)|

k=0

‘ 1 12
<c|fll, o lna,(du, x)] ”(H«———w)) ., xeQ.  (55)

n(l— \,2

Moreover, if' 4 is a subset of Q for which min, . {1 —x7} >8>0, where i
is the index in (5.4), then (5.5) holds uniformly on 4.

Proof. Forxe®, letd, ,={ye: |y,—x;|<n '}, where iis the index
in (5.4). For ke N, we write

Spldu, fox) =Sy i (di, 1. X) + 8, o (du fx),
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where

Sealdu, fix)= j K (di, x, y) f{y) duly),

i

and

Sk 2 (du, f, X)=f K, (du, X, y) fy) duly).

INA,

For a set 4 < R, denote by |4] its d-dimensional Lebesgue measure. Then,
since (4, ;| <2%n, we have by the Cauchy-Schwarz inequality

S (du fxP < K X )T day) | LA T duty)

An An,

<K, (du, x,x)J LAy) ] duty)

1

(RN

"

<K, (du. x, X)J [f(y)]" duty)

s

2N /1 o (A de,x)] e
Therefore,

ln 1 . ) .
= Y 1S du, ) <297 [l o [nA,(die. )] R (5.6)

nk:()

By the Christoffel-Darboux formula (2.3) for the index 7 in (5.4), we can
write

Spoldu, fx)=Pldu,x) A, a, (du, F)
—P] ldu.x)A, . a,(du, F)
where a, (du, F) is the Fourier coefficient of F, and
Sy

Fly)={ Xi— ),
0 il yed, .

if yeQ\4

NN

Since fe Lzﬂv we have Fe Lf,ﬂ as well. By Parseval’s identity, we then have

n -1 ks
Y lagldu, F)S< Y Jag(du, F)‘%:’ |F(v)|* duly).
<2

k=10 k=0



234 YUAN XU

Since € is compact, we have by (2.2) that sup, . |4, ;|- < oo. Therefore,
by the Cauchy-Schwarz inequality, we obtain

; no1

(|
Z 1Se o, )P < 2sup (A, 1y 2 UPwldis x5 |y Ldi)]

A =0 K=0 A=0

+ HDA 1(‘4“« x)|3 Ia/\((//‘”:)

-

n 1 1.2 2 1 1
<2swp e (3 Pudexi3) (Y e PR

k=0 A=0 Ak =0

- 1:2
<2sup iy [z Lo (] 1Fy P duty) )
v 2

Az0

(5.7)

Since dyie = Wdx, and fis continuous on €2, we have

' 2 -2 I 1
| IRy <1712 g | e Wy dy.
Yo Yo X =yl
For yeRY we write ¥ =(1,.n ¥ + Vi 1. Va)€RY ' Let x, be the
characteristic function of €. Then the last integral 1s less than or equal to
; [ 7oy
’ A)" Wiy)dy,dy
L P SR r“y':ln(x,'__l',"_

o axg—={ 1) ol 5
= ‘ + | ﬂ"v_)‘“; Wiy)dy,dy'.
L onLapd A

1 SN+ lin) (,\',-—71',»)"

Let y(r)=(yy, ¥ 120, Vi s Vg) By integration by parts, the first
integral between brackets is equal to

l - il PRVEEN R F)
: 31 xalyln)) Wiytr)) dr +2
(\i_,\',) v 1 b
| ox
X ey Wyt drdy,
1 A W y 5 Ay thimy 1
SV t 2 —_—
H'*’v\',)_J IXQ(Y( )) Wiy(t)) dit + I (,\‘,.—yl.)}

x [ vty Wiyt dr dy,.

Al
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Therefore, by Fubini’s theorem and the condition (5.4) we obtain

Ny = {1m) -
[ /g(yv) S W(y) dy, dy’

J[~l.l]‘/*"~l X, — ¥,

| 2oly(1)) Wiy()ydr dy'
1

1
< : ) J
(1+.\‘,-)' [- 1 1=
AV SR oy dy.
+2 1ol ¥(8) Wiy(n)) dedy ——
f 1 J[——l.l]""JJ', Aty y } (»\',‘—}',‘)3
M l [ i 2M ’a\', (17
< ; "+
T+, 71-1]‘171/(11‘)' )
: dy,
x oly)dy —i
J[,Ll]u e yidy (x,—1)?

M2d -1
+2Mn |Q).

<
1+ x,
Similarly, we have
] . M
| FAY iy v, dy < v 2mmi@)
[ 1=t bt X — 3, ] F=x

Therefore, we have proved that
M M
~—~+—~——+4Mn}£2}} .

Jg )F(Y))“d#(Y)$UfJ?sz{l_\' l+_\-,_

Hence, putting all estimates together, we obtain from (5.7) that

ln——l .
= 3 1Sk adu ) <41, sup (A, 1s [4,0du, x)] 712

LA k=0
M M 12
< +-——+4/Wn|$?|> n!
l—x, 1+ux, ,
l 12
<cnAdu, x)} "2 (l +——-—-—,~) .
n(l—x;)

The desired result follows from the inequality and (5.6).
We remark that by using the Christoffel-Darboux formula and the three-

term relation repeatedly, we can show that
y (X)Cu.rpn+l(y)

pl:+u
s

u. r=

d-1
(\]~}yl)"'(xd_yd)Kn(x*y)z Z
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where some C, , , may be zero and others are products of matrices 4, ;
and B, ,, n—d<k<n+d—1. For yu that has compact support, |C, . .|,
are uniformly bounded. This formula could be used instead of the
Christoffel-Darboux formula in the proof of the above theorem. Using
A,=1y ly—x|.<n '} instead of 4,,, we can show that the term
n 'Y S, du, £, x) is bounded by ¢[n“A(du, x)] . However, the estimate
of the second term involving S, , becomes worse than what we have above.

For d =1, a more delicate analysis is used in [2] to establish the strong
(C, 1) summability of orthogonal polynomials of one variable, which holds
for fe L2, at those x for which [ni,(du, x)] '<c. It may be possible to
extend this result to multivariate orthogonal polynomials satisfying
stronger conditions, for example, functions having certain higher order
derivatives and the highest derivative belongs to L;,. However, it seems to
be necessary to require the stronger conditions on f through higher order
divided differences, which indicates that it may be necessary to consider
certain linear combinations of the (C, 1) sums instead of (C, 1) sums them-
selves. As an alternative and an application of Theorem 5.4, we consider
the de la Vallée-Poussin sum

2n 1

Vdafi=n 'Y Sylduf).

k=n

which is easier to handle since it preserves polynomials in /79 .

THEOREM 5.5, Let pe. #(RY) be absolutely continuous with respect to
the Lebesgue measure, and € :=supp u be a compact subset <[ —1,1]%
Let x=(x,,..x)el =1, 1] be fixed and let (54) and (5.2) hold at x.
Then in the interior of Q2

20 -1
= 3 Sudu S x) = ()] S en' " PE, (f) (5.8)

k=n

In particular, if for all odd d, fe CYYV4Q), and for all even d, fe
CY= 2 QY and each of its [(d—2)/2] partial derivatives satisfy

i d—2
IDYfx) = DSyl < Ix—yla<h k[==5—
for some B> 1/2, then in the interior of 2
l 2n -1
lim » > ISildu, £, x) = f(x)| =0. (5.9)

e k=n
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Moreover, if A is a subset of Q for which min, . ({1 —x}} 28>0, where i
is the index in (5.4), and (5.2) holds uniformly on A, then both (5.8) and (5.9)
hold uniformly on A.

Proof. By Theorem 5.4 and condition (5.2) we have

2n- | 2n 1 n—1

1 _ 1
. Z |Sddu, f. x)|=22— Y lS,\(d,u,j,x)l—; Z 1S, (du, 1, x)|

k=n k=0 k=0

Scl2ndy0dp,x)] NS o <en TR, o

Let P,ell¢_, such that E, (f), o=0f—P,|. o Since S,(du,f)
preserves polynomials in /T¢_,, we obtain by using the previous inequality

with f replaced by f— P, that .
1 2n | ) ) 2n—1 )
S Y ISdd S =S <= T IS S~ Py X)L = P
A=un hk=n

S(‘n‘dilsznf l(./‘)a'
If d is odd and fe C'“ "2 then by [8, p. 90] it is easy to see that
1
E(f), <en W07 % w (D'ff; -> .
Tkl =(d—1)2 nys.,

where w(/f, h), is the modulus of continuity of f

wlf.h), = max max |f(x)—f(y)l

I<i<d [xi—yif<h

Since w(D*f,n "), — 0 for |k| = (d —1)/2 as n— oo, we have (5.8) for odd
d. Similarly, for even d we have

) I
EJlf), Sen -2 ¥ w (D"f, _> -
Il =(d— 2172 n/,

Since our assumptions imply that for even d,

d—2
5

w <D"f,%> <en (k| = p>1/2,

we have (5.9) for even d as well. ||

Using the estimate of the Christoffel function in Section 3, several conse-
quences of Corollary 5.3 and Theorem 5.5 can be formulated for measures
satisfying condition (5.2). Interesting examples include the classical
measures mentioned in Section 3 and measures that have support on
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[—-1,1]¢ and satisfy condition (4.3.1). We shall not formulate these
corollaries formally. We note that for d=1, the above theorem is the
classical one (cf. [2, p. 157])

2n -1

- Z IS,\.((I#,];X)ISCE", l‘j)/

k=mn

For ¢ =2, this theorem implies that (5.9) holds for all fe () satisfying
the Lipschitz condition

Lf(x)—f(y)| <h”, x—yl,<=, p>1/2

=

The convergence in this theorem is the so-called strong convergence,
since it is clearly stronger than the usual convergence |V, (du, f, x) — f(x)] = 0.
It is possible that the conditions for the usual convergence will be
considerably weaker. We end this paper with the following remark. Because
of Corollary 5.3, Theorem 5.5, and the theory for d=1, it seems to be
reasonable to conjecture that for fe L}, the (C, ) mean of orthogonal
polynomials in « variables will be strongly convergent under the
assumption on g similar to Corollary 5.3 and Theorem 5.5 for § large
enough. The value of ff should depend on the dimension d. For example,
for d=2, f>3/2 seems likely. Similar phenomena appear in the con-
vergence of the spherical means of multivariate Fourier series (cf. [12]).
However, for the higher order Cesdro means the method used in this paper
does not seem to be strong enough. This method depends on the condition
(5.2), which is the (C, 1) boundedness of orthogonal polynomials.
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